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Abstract
We prove that the q-states Potts model on graph is spontaneously magnetized at
finite temperature if and only if the graph presents percolation on the average.
Percolation on the average is a combinatorial problem defined by averaging
over all the sites of the graph the probability of belonging to a cluster of a given
size. In this paper, we obtain an inequality between this average probability
and the average magnetization, which is a typical extensive function describing
the thermodynamic behaviour of the model.

PACS numbers: 64.60.Ak, 05.50.+q, 02.10.Ox

1. Introduction

The interplay between spin models and percolation has been put into evidence since the
fundamental work of Fortuin and Kasteleyn [1], where it is shown that percolation is the limit
for q → 1 of the random cluster representation of q-states Potts model. This representation,
as already pointed out in [1], is very general and can be performed on any discrete structure,
i.e. on graph.

A further step has been the result proved in [2], showing that, on lattices, the existence of
percolation implies Potts transition for any value of q. The main purpose of this work is the
extension of the result to generic networks.

An important issue in this direction has been a mathematical paper [3] proving that Potts
model has more than one Gibbs measure if it is defined on graphs showing percolation.
The multiplicity of Gibbs measures is the most used definition of symmetry breaking in
mathematical literature. However, it does not always correspond to the thermodynamic
concept of phase transition.

Indeed, in the study of the thermodynamic properties of physical systems, we are interested
in the free energy and its derivatives such as the average magnetization, the susceptibility,
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Figure 1. The brush graph is obtained by adding a linear chain to each site of a two-dimensional
lattice.

the specific heat, which are typical average extensive quantities. On the other hand, the
existence of a single Gibbs measure, as explained in [3], depends on a local parameter, that
is the magnetization of a site of the graph. On lattices, translation invariance implies that
local and average quantities coincide (the proof of [2] depends on this fact). However, for
inhomogeneous structures the results can be different in the two cases. For example, on the
brush graph (see figure 1) as we will prove in detail, there is not a single Gibbs measure, but the
thermodynamic functions do not present discontinuities and the spontaneous magnetization
is zero.

A generalization of the result [2], which takes into account the thermodynamic behaviour
of the system, requires the introduction of the new problem of percolation on the average.
A graph G is said to present percolation on the average if the average, over all sites, of the
probability of belonging to a cluster of size greater than l remains positive when l → ∞. We
will prove that the q-states Potts model on a graph G is spontaneously magnetized if and only
if G presents percolation on the average.

Therefore, the study of spin models with discrete symmetry leads to a classification of
graph topology which can be formulated in terms of a purely combinatorial problem.

An analogous result [4] has been previously obtained for classical spin models
with continuous symmetry, where the thermodynamic behaviour depends on a different
combinatorial problem, i.e. random walks. In particular, the models present spontaneous
magnetization if and only if the graph is transient on the average [5] (i.e. a graph where the
average probability for a random-walk of ever returning to the starting site is smaller than
one).

These two classifications are different, indeed, it is well known that lattices presenting
percolation (i.e. lattices with dimension d � 2) are transient on the average only if d � 3.
In recent works [6], it has been proved that the ‘anomalous’ behaviour of presenting average
percolation in a recurrent on the average structure is typical not only of two-dimensional
lattices, but also of low-dimensional networks, such as the Sierpinski carpet. Therefore,
a general result clarifying the relation between the two classifications is still lacking.
Furthermore, up to now we do not know if percolation on the average is related to graph
topology by a simple parameter, as it is the spectral dimension [7] in the case of transience on
the average.
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This paper is organized as follows. In the next section we introduce the Potts model and
percolation on graph, we define percolation on the average and we state the main result of
the paper, i.e. Potts model is spontaneously magnetized if and only if it is defined on a graph
presenting percolation on the average. In the last two sections we prove the theorem.

2. The q-states Potts model and percolation on graph

A graph G (see e.g. [8] for an introduction to graph theory) is a countable set V of vertices or
sites i connected pairwise by a set E of unoriented edges or links (i, j) = (j, i). Connected sites
are called nearest neighbours and we denote with zi the connectivity (number of neighbours)
of the site i. A path is a sequence of consecutive links {(i, k)(k, h) . . . (n,m)(m, j)}. The
chemical distance ri,j is the length (number of links) of the shortest path connecting the sites
i and j . The Van Hove sphere So,r of centre o and radius r is the set of the sites of G such
that ro,i � r . We will call Eo,r the set of all (i, j) ∈ E such that i, j ∈ So,r , ∂Sr the set of the
vertices of Sr connected with the rest of the graph and we denote with | · | the cardinality of a
set. Let φi be a real function of the sites of an infinite graph, the average in the thermodynamic
limit φ̄ is

φ̄ ≡ lim
r→∞

∑
i∈So,r

φi

|So,r | . (1)

Interesting properties of the thermodynamic average, such as the independence of the choice
of the centre o, are proved in [5]. Therefore, in the following we will drop the index o. The
measure ‖S‖ of a subset S of V is the average value χ(S) of its characteristic function χi(S)

defined by χi(S) = 1 if i ∈ S and χi(S) = 0 if i �∈ S.
Important constraints on graph topology follow from the requirement to describe a physical

network. Real systems, indeed, have bounded local energy and they are embedded in a
finite-dimensional space. Therefore, we will consider only connected graphs with bounded
connectivity (zi < zmax ∀i ∈ E) and such that

lim
r→∞

|∂Sr |
|Sr | = 0. (2)

The definition of the q-states Potts model (see e.g. [9] for a review) on an infinite graph
G first requires to introduce the model on the Van Hove spheres Sr . For each site i ∈ Srsi is a
q-state function si = 1 . . . q and the Hamiltonian is given by:

Hr =
∑

(i,j)∈Er

(1 − δ(si, sj )) + h
∑
i∈Sr

(1 − δ(si, 1)) (3)

where the Kronecker delta-function is δ(si, sj ) = 1 if si = sj and δ(si, sj ) = 0 otherwise. Note
that the case q = 2 is the Ising model. In the canonical ensemble the partition function Zr

is given by the sum of the Boltzmann weight exp(−βHr) over all possible configurations
{si};β represents the inverse temperature of the system. Thermodynamic properties of
statistical models are described by extensive order parameters, in this case the average
magnetization:

Mr(β, q, h) = |Sr |−1
∑
i∈Sr

〈δ(si, 1) − q−1〉r

≡ |Sr |−1
∑
i∈Sr

Z−1
r

∑
s1...sSr

(δ(si, 1) − q−1) e−βHr (4)
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where 〈·〉r denotes the thermal average. The Potts model on G presents spontaneous
magnetization if there exists βc such that for all β > βc

lim
h→0

M(β, q, h) ≡ lim
h→0

lim
r→∞ Mr(β, q, h) > 0. (5)

The existence of the thermodynamic limit r → ∞ is always assumed in this paper.
Percolation (see e.g. [10, 11] for a mathematical and a physical treatment) is defined by

introducing a probability p, 0 � p � 1 and each link (i, j) ∈ E is declared to be open with
probability p and closed with probability 1 − p independently. The cluster Ci containing the
site i is the set of all the sites connected with i by a path of open links. The i-size of the cluster
Ci is the maximum chemical distance from i of the sites of Ci . We call Pi(l, p) the probability
for i to belong to a cluster of i-size �l. A graph G is said to present (local) percolation if
there exists a probability p < 1 such that liml→∞ Pi(l, p) > 0. On a graph with bounded
connectivity this property is independent of i [10].

A graph presents percolation on the average if there exists a probability p such that

lim
l→∞

P(l, p) ≡ lim
l→∞

lim
r→∞ |Sr |−1

∑
i∈Sr

Pi(l, p) > 0. (6)

Percolation on the average is a new combinatorial problem and it gives rise to a graph
classification which turns out to be fundamental for understanding the thermodynamic
behaviour of physical models on graph. In the main theorem of the paper, indeed, we
prove that the q-states Potts model is spontaneously magnetized if and only if it is defined on
a graph presenting percolation on the average, obtaining a generalization to inhomogeneous
structures of the classical result for lattices by Aizenman et al [2]. The proof is mainly inspired
by [1, 3].

First, following [1], we introduce a representation of the q-states Potts model in terms of
the q-random cluster model on the supplemented graph G′. Then, from an important property
of the random cluster stated in [3], we get an inequality between the local magnetization and
the percolation probability on the supplemented graph: this is an extension of [3] to the case
h �= 0. In the second part of the proof we take the thermodynamic average and we show
that the physical requirements on the graph allow to formulate the inequality for the average
magnetization in terms of average percolation on G. The theorem directly follows from this
inequality.

Let us first show that local and average percolation define different classifications of
inhomogeneous networks. In particular, the brush graph (figure 1) presents local percolation
but no percolation on the average. If we choose p larger than the threshold of the two-
dimensional percolation and we call r the distance of i from the plane of the brush, we have
that Pi(l, p) > Psq(l − r, p)pr(Psq(l, p) is the probability that a site of a two-dimensional
lattice belongs to a cluster of size >l) and then liml→∞ Pi(l, p) > pr liml→∞ Psq(l−r, p) > 0.
On the other hand, for all the sites of the brush at a distance from the plane greater than l we
have Pi(l, p) = 2pl − p2l , 2pl − p2l is the probability for a site of a linear chain to belong to
a cluster of i-size greater than l. We call Rl the subset of the brush graph given by the sites
whose distance from the plane is smaller than l. We have ‖Rl‖ = 0 and

lim
l→∞

P(l, p) � lim
l→∞

‖Rl‖ + (1 − ‖Rl‖)(2pl − p2l ) = 0. (7)

Therefore, on the brush graph the q-states Potts model does not have a single Gibbs measure
[3]; however the system is not spontaneously magnetized and the thermodynamic functions
are analytical.
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3. Random cluster representation of the Potts model

Let us define the supplemented q-random cluster model [1]. We call G′ the graph obtained by
adding to G a supplementary site o connected by a new link to each site of G. The supplemented
spheres are obtained by adding to the spheres Sr the new vertex o and the relevant edges. We
will call S ′

r and E′
r the set of sites and the set of links of the supplemented sphere. The

configurations ξ of the supplemented random cluster model on S ′
r are obtained by declaring

each link of E′
r open or closed. The supplemented q-random cluster model [1] is defined by

choosing each configuration according to the probability distribution:

µ(p, po, q, ξ) = pNS(ξ)(1 − p)|Er |−NS(ξ)pNo(ξ)
o (1 − po)

|Sr |−No(ξ)qC(ξ) (8)

where p, po and q are real parameters of the model (q � 1, 0 � p � 1 and 0 � po � 1).
NS(ξ) is the number of open links in Er,No(ξ) the number of open links connecting o to
Sr and C(ξ) the number of clusters in the configuration (|Sr | and |Er | are respectively the
cardinalities of Sr and Er ). For q = 1 and po = 0 the random cluster model is exactly the
percolation model restricted to the sphere Sr .

As already pointed out in the original work by Fortuin and Kasteleyn [1], q-states Potts
model and q-random cluster model are equivalent on any graph G. Indeed if we fix p = 1−e−β

and po = 1 − e−βh, their partition functions coincide and

〈δ(si, 1) − q−1〉r = P o
i (p, po, q) ≡

∫
Fo

i (ξ)µ(p, po, q, ξ) (9)

where Fo
i (ξ) = 1 if o ∈ Ci and Fo

i (ξ) = 0 otherwise. Then, P o
i (p, po, q) represents the

probability for the site i to belong to the same cluster of the supplemented site o.
The space of configurations of the random-cluster model is equipped by the partial order:

ξ � η if the set of open links in ξ is included or equal to the set of open links in µ. We will
say that the probability distribution µ(ξ) stochastically dominates the probability distribution
µ′(ξ) (µ′ �D µ) if:∫

f dµ′ �
∫

f dµ (10)

for all increasing function f .
In [3], it is proved that important inequalities for the probability distributions follow from

FKG [12] theorem. These inequalities can be easily generalized to the case of supplemented
graph, obtaining

µ(p′, p′
o, 1, ξ) �D µ(p, po, q, ξ) �D µ(p, po, 1, ξ) (11)

where p′ = p(q − p(q − 1))−1 and p′
o = po(q − po(q − 1))−1.

Since Fo
i (ξ) is an increasing function, from (9) and (11) we have

P o
i (p′, p′

o, 1) � 〈δ(si, 1) − q−1〉r � P o
i (p, po, 1) (12)

(12) is an extension to the case h �= 0 of the inequality for local magnetization proved in [3].

4. Spontaneous magnetization and percolation on the average

Let us first take the average of (12) over all the sites of the sphere Sr . We obtain

|Sr |−1
∑
i∈Sr

P o
i (p′, p′

o, 1) � Mr(β, q, h) � |Sr |−1
∑
i∈Sr

P o
i (p, po, 1). (13)
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Inequalities (13) provide upper and lower bounds for the magnetization of the Potts model in
terms of the percolation model defined on the supplemented sphere S ′

r . Let us reformulate
these bounds in terms of the percolation on G.

First we prove a property of graphs with bounded connectivity and satisfying (2). In
the probability measure defined on Sr by (8) with q = 1 and po = 0, we call Pi,r (l, p) the
probability for the site i to belong to a cluster of i-size greater than l. Let us show that in
the thermodynamic averages one can substitute Pi,r (l, p) with the probability defined on the
infinite graph Pi(l, p). We will call S+

l,r the subset of Sr of all the sites i such that the distance
of i from the border ∂Sr is larger than l and S−

l,r its complementary in Sr . For the sites i ∈ S+
l,r

all the clusters Ci of i-size smaller than l are included in Sr , then the probability of belonging
(or not belonging) to one of these clusters is equal in percolation on G and in percolation on
Sr . Furthermore we have that

‖S−
l,r‖ = lim

r→∞ |Sr |−1|S−
l,r | � lim

r→∞ |Sr |−1|∂Sr |zl+1
max = 0 (14)

where we used (2) and the boundedness of the coordination number. Then Pi,r (l, p) and
Pi(l, p) differ only on a set of zero measure and in the thermodynamic averages we can
exchange one for the other.

Let us now prove the main theorem of the paper. From the boundedness of the correlation
number and the independence of percolation probabilities, one obtains the inequality

P o
i (p, po, 1) �

(
1 − (1 − po)

zl
max

)
(1 − Pi,r (l, p)) + Pi,r (l, p). (15)

Indeed
(
zl

max −1
)/

(zmax + 1) is the maximum number of sites in a cluster of i-size <l and then(
1 − (1 − po)

zl
max

)
is an upper bound on the probability that a site of the cluster is connected

to o. From (13) and (15) taking the thermodynamic limit r → ∞ we have

M(β, q, h) � lim
r→∞

1

|Sr |
∑
i∈Sr

((
1 − (1 − po)

zl
max

)
(1 − Pi(l, p)) + Pi(l, p)

)
. (16)

Letting h → 0, since also po → 0, we obtain

lim
h→0

M(β, q, h) � lim
h→0

(
1 − (1 − po)

zl
max

)
+ P(l, p) = P(l, p). (17)

Now we have to consider the first inequality in (13). From the probability independence in
percolation, we get

P o
i (p′, p′

o, 1) � (1 − (1 − p′
o)

l+1)Pi,r (l, p
′). (18)

Here l + 1 is the minimum number of sites in a cluster of i-size �l, and then (1 − (1 − p′
o)

l+1)

is a lower bound on the probability that a site of the cluster is connected to o. Taking the
thermodynamic average we have

M(β, q, h) � (1 − (1 − p′
o)

l+1)P (l, p′). (19)

Letting first l → ∞ and then h → 0 we have

lim
h→0

M(β, q, h) � lim
l→∞

P(l, p′). (20)

Finally, from (17) and (20) one has

lim
l→∞

P(l, p′) � lim
h→0

M(β, q, h) � lim
l→∞

P(l, p). (21)
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If the graph presents percolation on the average, there exists a probability p′ such that
liml→∞ P(l, p′) > 0 and then the first inequality in (21) implies that the model for
β = log(1 + p′q(1 − p′)−1) is magnetized. On the other hand, if liml→∞ P(l, p) = 0
for all values of p, the second inequality in (21) implies that the magnetization of the system
is zero for all temperatures and this concludes the proof.

The result can be easily generalized to Potts models with disordered ferromagnetic
couplings described by the Hamiltonian Hr = ∑

(i,j)∈Er
Jij (1 − δ(si, sj )) + h

∑
i∈Sr

(1 − δ(si, 1)) with 0 < ε < Jij < K for all (i, j) ∈ G.
On the other hand, an important open question is the possibility of extending the proof

to different ferromagnetic spin models with discrete symmetry, such as the clock model. As
mentioned in the introduction, another basic problem is a better understanding of the relation
between percolation on the average, transience on the average and graph topology.
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